The Solvent Effect on the Chemoselectivity of Palladium-catalyzed Oligomerization of 3, 3-Dimethyl-1-butyne

Jin Sheng CHENG ${ }^{1}$, Jin Heng LI 1, Huan Feng JIANG ${ }^{1,2}{ }^{2}$, Xiao Yue OUYANG ${ }^{1}$
${ }^{1}$ LCLC, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650
${ }^{2}$ State Key Laboratory of Organometallics Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Abstract

The chemoselectivities of PdCl_{2} and CuCl_{2}-catalyzed oligomerization of 3, 3-dimethylbutyne: 1, 3, 5-tri-tert-butylbenzene, 2, 2, 7, 7-tetramethyl-3, 6 -dichloro-3, 5 -octadiene and 2, 2, 7, 7 - tetramethyl-3, 5 -octadiyne were obtained, respectively, by regulating the polarity of the solvent.

Keywords: Solvent, chemoselectivity, palladium, oligomerization, 3, 3-dimethyl-1-butyne.

Recently, we found that the solvent plays an important role in the chemoselectivity using Pd (II) as the catalyst. This finding is expected to have a broad impact on studies of Pd (II)-catalyzed organic reactions leading to new methodology ${ }^{1}$. Herein we report another example of solvent effect on the chemoselectivity of palladium-catalyzed oligomerization of 3, 3-dimethyl-1-butyne.

It has been reported that $\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$ mediated a cyclotrimerization process of 3 , 3-dimethyl-1-butyne at $20^{\circ} \mathrm{C}^{2}$. The results indicated that the solvent could affect the chemoselectivity. We found that the similar phenomena by using a catalytic amount of PdCl_{2} and 2 equiv. of CuCl_{2} as the catalyst systems (Scheme 1). The results of PdCl_{2} and CuCl_{2}-catalyzed oligomerization of 3, 3-dimethyl-1-butyne were summarized in Table 1. As shown in Table 1, the solvents were crucial in the chemoselectivity of the oligomerization: (1) In $\mathrm{C}_{6} \mathrm{H}_{6} / n$ - BuOH , the yields selectivity to cyclotrimerization product $\mathbf{2}$ and dimerization product $\mathbf{3}$ depends upon the $\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}$ volumetric ratio: In $\mathrm{C}_{6} \mathrm{H}_{6}$ alone $\left(\mathrm{C}_{6} \mathrm{H}_{6}: 10.6 \mathrm{~mL}\right), 74 \%$ of the cyclotrimerization product $\mathbf{2}(1,3,5$-tri-tert-butyl benzene) was obtained as the sole product; while in $\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(10 / 0.6)$, the yield of 2 was 100%. (2) When the $\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}$ volumetric ratio was $9 / 1.6$, the yield of cyclotrimerization product $\mathbf{2}$ together with the by-product $\mathbf{3}$ was 93% (the ratio of $2 / 3$ is 85/15, Table 1, entry 6), i.e. the dimerization product 3 (2, 2, 7, 7-tetramethyl-3, 6 -dichloro-3, 5-octadiene). The dimerization product $\mathbf{3}$ was dominant in increased $\mathrm{C}_{6} \mathrm{H}_{6}$ / n - BuOH ($\geq 6 / 4.6$). (3) Only $\mathbf{3}$ was produced when the $\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}$ volumetric ratio was not less than 4 / 6.6.

[^0]
Scheme 1

The structure of 3 was confirmed through X-ray crystallography (Figure 1), GC-MS, ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR spectra ${ }^{3}$. (4) In $\mathrm{H}_{2} \mathrm{O}$, another dimerization product 4 (2, 2, 7, 7-tetramethyl-3, 5-octadiyne) was obtained as the sole product.

Figure 1 Crystal structure of 3

When water was used as the reaction medium, only dimerization product 4 was obtained (entry 13, 14, Table 1).

The reaction temperature could affect the rate and yield of the cyclotrimerization to some extent, as shown in entries 2 and 3, Table 1. As the existence of some CuCl in CuCl_{2}, product 4 could also be yielded in the absence of PdCl_{2}. ${ }^{4,5}$
In conclusion, we found that the solvents could control the chemoselectivity in the oligomerization reaction of 3, 3-dimethyl-1-butyne with the catalyst system of PdCl_{2} and CuCl_{2}. It would not only allow us to construct some new reactions, but also let us to reconsider the role of the solvent in the Pd (II)-catalyzed reactions. Further efforts

Solvent Effect on the Chemoselectivity of Oligomerization of 3, 3-Dimethyl-1-butyne

Table $1 \quad \mathrm{PdCl}_{2}$ and CuCl_{2}-catalyzed oligomerization of 3, 3-dimethyl-1-butyne ${ }^{\mathrm{a}}$

Entry	Solvent (ratio)	Time (h)	T (${ }^{\text {C }}$)	Isolated Yield (\%)	
				$2+3(2 / 3)$	4
1	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(10 / 0)$	12	40	74 (100/0)	trace
2	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(10 / 0.6)$	18	r.t.	85 (100/0)	trace
3	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(10 / 0.6)$	12	40	100 (100/0)	0
$4^{\text {b }}$	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(10 / 0.6)$	12	40	35 (100/0)	trace
5	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(9.6 / 1.0)$	12	40	94 (100/0)	trace
6	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(9 / 1.6)$	12	40	93 (85/15)	trace
7	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(8 / 2.6)$	12	40	92 (68/32)	trace
8	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(7 / 3.6)$	12	40	92 (52/48)	trace
9	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(6 / 4.6)$	12	40	93 (39/61)	trace
10	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(5 / 5.6)$	12	40	93 (8/92)	trace
11	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(4 / 6.6)$	12	40	93 (0/100)	trace
12	$\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}(3 / 7.6)$	12	40	93 (0/100)	trace
13	$\mathrm{H}_{2} \mathrm{O}$	12	40	trace(2)	45
$14^{\text {c }}$	$\mathrm{H}_{2} \mathrm{O}$	12	40	0	17

$\overline{{ }^{a} \text { Reaction conditions }{ }^{2} \text { : alkyne } \mathbf{1}(1 \mathrm{mmol}), \mathrm{PdCl}_{2}(10 \mathrm{mg}, 0.056 \mathrm{mmol}) \text { and } \mathrm{CuCl}_{2}(2 \mathrm{mmol}) .{ }^{b} \text { In }}$ the absence of CuCl_{2}, the conversion of alkyne $\mathbf{1}$ is 41%. ${ }^{c}$ In the absence of PdCl_{2}, the conversion of alkyne $\mathbf{1}$ is 19%.
associated with the solvent effect on the chemoselectivity are under progress in our laboratory.

Acknowledgments

We are grateful to the National Natural Science Foundation of China for Financial support (Grants 2017253).

References and Notes

1. (a) Li, J., Jiang, H., Feng A., Jia, L. J. Org. Chem. 1999, 64, 598. (b) Li, J., Jiang, H., Chen. M. J. Org. Chem. 2001, 66, 3627.
2. (a) Canziani, F., Allevi, C., Garlaschelli, L., Malatesta, M. C., Albinati, A., Ganazzoli, F. J. Chem. Soc., Dalton Trans., 1984, 187. (b) Maitlis, P. M. J. Organometal. Chem., 1980, 200, 161.
3. Spectral data of the products $2, \mathbf{3}$, and 4: 2: white crystal, mp $70 \sim 73^{\circ} \mathrm{C}$ (lit. ${ }^{6} \mathrm{mp} 73^{\circ} \mathrm{C}$) ; ${ }^{1} \mathrm{H}$ NMR $\delta 1.207(\mathrm{~s}, 27 \mathrm{H}), 6.523(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 28.9,39.2,117.9$, 148.0; MS $\mathrm{m} / \mathrm{z} 246\left(\mathrm{M}^{+}\right)$, $219,202,199,183,163,157,143,123,107,91,77,65,57,41,29 ; 3$: white crystal, ${ }^{1} \mathrm{H}$ NMR $\delta 1.208(\mathrm{~s}, 18 \mathrm{H}), 6.524(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 28.8,39.2,76.7,77.0,77.3,117.9,148.0 ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $234\left(\mathrm{M}^{+}\right), 219,199,177,163,150,143,123,107,91,77,57,41,28$. Found: C, $61.56 \mathrm{H}, 9.01$; $\mathrm{Cl}, 29.42$ calcd. Crystal data: $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Cl}, \mathrm{M}=117.59$, Crystals wre grown from petroleum ether, monoclinic, space group: $\mathrm{P} 2(1) / \mathrm{n}, \mathrm{a}=6.2780(8), \mathrm{b}=10.3432(14), \mathrm{c}=10.6927$ (15) $\AA, \quad \alpha=90, \beta$ $=105.300(3), \gamma=90^{\circ}, V=669.72(16) \AA^{3}, Z=4, D_{c}=1.164 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda=0.71073 \AA, T=293(2) K, \quad \mu$ $=0.450 \mathrm{~mm}^{-1}$, 4037 reflection measured, 1582 unique ($\mathrm{R}_{\mathrm{int}}=0.0750$) were used in all calculations. Final $\mathrm{R}=0.0454$ (obs.), 0.0670 (all); $w R\left(\mathrm{~F}^{2}\right)=0.1140$ (obs.), 0.1222 (all); 4: solid, ${ }^{1} \mathrm{H}$ NMR $\delta 1.208(\mathrm{~s}, 18 \mathrm{H}), 6.524(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 28.8,39.2,76.7,77.0,77.3,117.9,148.0$; MS $m / z 162\left(\mathrm{M}^{+}\right), 147,132,119,105,91,77,55,41,39$.
4. Hansen, L., Boll, P. M. Phytochemistry, 1986, 25, 285.
5. (a) Kim, Y. S., Jin, S. H., Kim, S. L., Hahn, D. R.; Arch. Pharm. Res., 1989, 12, 207. (b) Matsunaga H., Katano, H., Yamamoto, M.; Fujito, H., H.; Mori, M., Tukata, K. Chem. Pharm. Bull., 1990, 38, 3480.
6. Maccaulay, D. A.; Line, A. P. J. Am. Chem. Soc. 1953, 75, 2411.

Received 27 September, 2002

[^0]: *E-mail: jhf@mail.gic.ac.cn

