The Solvent Effect on the Chemoselectivity of Palladium-catalyzed Oligomerization of 3, 3-Dimethyl-1-butyne

Jin Sheng CHENG¹, Jin Heng LI¹, Huan Feng JIANG^{1, 2}*, Xiao Yue OUYANG¹

¹ LCLC, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650
² State Key Laboratory of Organometallics Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Abstract: The chemoselectivities of PdCl₂ and CuCl₂-catalyzed oligomerization of 3, 3-dimethylbutyne: 1, 3, 5-*tri-tert*-butylbenzene, 2, 2, 7, 7-tetramethyl-3, 6-dichloro-3, 5-octadiene and 2, 2, 7, 7- tetramethyl-3, 5-octadiyne were obtained, respectively, by regulating the polarity of the solvent.

Keywords: Solvent, chemoselectivity, palladium, oligomerization, 3, 3-dimethyl-1-butyne.

Recently, we found that the solvent plays an important role in the chemoselectivity using Pd (II) as the catalyst. This finding is expected to have a broad impact on studies of Pd (II)-catalyzed organic reactions leading to new methodology¹. Herein we report another example of solvent effect on the chemoselectivity of palladium-catalyzed oligomerization of 3, 3-dimethyl-1-butyne.

It has been reported that Pd(PhCN)₂Cl₂ mediated a cyclotrimerization process of 3, 3-dimethyl-1-butyne at 20 $^{\circ}C^2$. The results indicated that the solvent could affect the chemoselectivity. We found that the similar phenomena by using a catalytic amount of $PdCl_2$ and 2 equiv. of $CuCl_2$ as the catalyst systems (Scheme 1). The results of $PdCl_2$ and CuCl₂-catalyzed oligomerization of 3, 3-dimethyl-1-butyne were summarized in Table 1. As shown in Table 1, the solvents were crucial in the chemoselectivity of the oligomerization: (1) In C_6H_6 / *n*-BuOH, the yields selectivity to cyclotrimerization product 2 and dimerization product 3 depends upon the C_6H_6/n -BuOH volumetric ratio: In C_6H_6 alone (C_6H_6 : 10.6 mL), 74% of the cyclotrimerization product 2 (1, 3, 5-tri-*tert*-butyl benzene) was obtained as the sole product; while in C_6H_6 / *n*-BuOH (10 / 0.6), the yield of 2 was 100%. (2) When the C_6H_6 / n -BuOH volumetric ratio was 9 / 1.6, the yield of cyclotrimerization product 2 together with the by-product 3 was 93% (the ratio of 2/3 is 85/15, Table 1, entry 6), *i.e.* the dimerization product 3 (2, 2, 7, 7-tetramethyl-3, 6-dichloro-3, 5-octadiene). The dimerization product **3** was dominant in increased C_6H_6 / n-BuOH (≥ 6 / 4.6). (3) Only **3** was produced when the C₆H₆ / n-BuOH volumetric ratio was not less than 4 / 6.6.

^{*} E-mail: jhf@mail.gic.ac.cn

The structure of **3** was confirmed through X-ray crystallography (**Figure 1**), GC-MS, ¹H NMR, and ¹³C NMR spectra³. (4) In H₂O, another dimerization product **4** (2, 2, 7, 7-tetramethyl-3, 5-octadiyne) was obtained as the sole product.

Figure 1 Crystal structure of 3

When water was used as the reaction medium, only dimerization product **4** was obtained (entry 13, 14, **Table 1**).

The reaction temperature could affect the rate and yield of the cyclotrimerization to some extent, as shown in entries 2 and 3, **Table 1**. As the existence of some CuCl in CuCl₂, product **4** could also be yielded in the absence of PdCl₂.^{4, 5}

In conclusion, we found that the solvents could control the chemoselectivity in the oligomerization reaction of 3, 3-dimethyl-1-butyne with the catalyst system of $PdCl_2$ and $CuCl_2$. It would not only allow us to construct some new reactions, but also let us to reconsider the role of the solvent in the Pd (II)-catalyzed reactions. Further efforts

968 Solvent Effect on the Chemoselectivity of Oligomerization of 3, 3-Dimethyl-1-butyne

Entry	Solvent (ratio)	Time (h)	T (°C)	Isolated Yield (%)	
				2 + 3 (2/3)	4
1	C ₆ H ₆ / <i>n</i> -BuOH (10/0)	12	[,] 40	74 (100/0)	trace
2	C ₆ H ₆ / n-BuOH (10/0.6)	18	r.t.	85 (100/0)	trace
3	C ₆ H ₆ / n-BuOH (10/0.6)	12	40	100 (100/0)	0
4 ^b	C ₆ H ₆ / n-BuOH (10/0.6)	12	40	35 (100/0)	trace
5	C ₆ H ₆ / <i>n</i> -BuOH(9.6/1.0)	12	40	94 (100/0)	trace
6	C_6H_6 / n -BuOH (9/1.6)	12	40	93 (85/15)	trace
7	C ₆ H ₆ / <i>n</i> -BuOH (8/2.6)	12	40	92 (68/32)	trace
8	C ₆ H ₆ / <i>n</i> -BuOH (7/3.6)	12	40	92 (52/48)	trace
9	C_6H_6 / n -BuOH (6/4.6)	12	40	93 (39/61)	trace
10	C_6H_6 / n -BuOH (5/5.6)	12	40	93 (8/92)	trace
11	C_6H_6 / n -BuOH (4/6.6)	12	40	93 (0/100)	trace
12	C_6H_6 / n -BuOH (3/7.6)	12	40	93 (0/100)	trace
13	H ₂ O	12	40	trace(2)	45
14 ^c	H ₂ O	12	40	Ó	17

 Table 1
 PdCl₂ and CuCl₂-catalyzed oligomerization of 3, 3-dimethyl-1-butyne^a

^{*a*} Reaction conditions²: alkyne **1** (1mmol), PdCl₂ (10 mg, 0.056 mmol) and CuCl₂ (2 mmol). ^{*b*} In the absence of CuCl₂, the conversion of alkyne **1** is 41%. ^{*c*} In the absence of PdCl₂, the conversion of alkyne **1** is 19%.

associated with the solvent effect on the chemoselectivity are under progress in our laboratory.

Acknowledgments

We are grateful to the National Natural Science Foundation of China for Financial support (Grants 2017253).

References and Notes

- 1. (a) Li, J., Jiang, H., Feng A., Jia, L. J. Org. Chem. **1999**, 64, 598. (b) Li, J., Jiang, H., Chen. M. J. Org. Chem. **2001**, 66, 3627.
- (a) Canziani, F., Allevi, C., Garlaschelli, L., Malatesta, M. C., Albinati, A., Ganazzoli, F. J. Chem. Soc., Dalton Trans., 1984, 187. (b) Maitlis, P. M. J. Organometal. Chem., 1980, 200, 161.
- 3. Spectral data of the products **2**, **3**, and **4**: **2**: white crystal, mp 70~73 °C (lit.⁶ mp73 °C); ¹H NMR δ 1.207 (s, 27H), 6.523 (s, 3H); ¹³C NMR δ 28.9, 39.2, 117.9, 148.0; MS *m/z* 246 (M⁺), 219, 202, 199, 183, 163, 157, 143, 123, 107, 91, 77, 65, 57, 41, 29; **3**: white crystal, ¹H NMR δ 1.208 (s, 18H), 6.524 (s, 2H); ¹³C NMR δ 28.8, 39.2, 76.7, 77.0, 77.3, 117.9, 148.0; MS *m/z* 234 (M⁺), 219, 199, 177, 163, 150, 143, 123, 107, 91, 77, 57, 41, 28. Found: C, 61.56 H, 9.01; Cl, 29.42 calcd. Crystal data: C₆H₁₀Cl, M=117.59, Crystals wre grown from petroleum ether, monoclinic, space group: P2(1)/n, a=6.2780(8), b=10.3432(14), c=10.6927 (15) Å, α =90, β =105.300(3), γ =90°, V=669.72(16) Å³,Z=4, D_c=1.164g cm⁻³, λ =0.71073 Å, T= 293(2)K, μ =0.450mm⁻¹, 4037 reflection measured, 1582 unique (R_{int}=0.0750) were used in all calculations. Final R=0.0454(obs.), 0.0670(all); wR(F²)= 0.1140(obs.), 0.1222(all); **4**: solid, ¹H NMR δ 1.208 (s, 18H), 6.524 (s, 2H); ¹³C NMR δ 28.8, 39.2, 76.7, 77.0, 77.3, 117.9, 148.0; MS *m/z* 162 (M⁺), 147, 132, 119, 105, 91, 77, 55, 41, 39.
- 4. Hansen, L., Boll, P. M. Phytochemistry, 1986, 25, 285.
- (a) Kim, Y. S., Jin, S. H., Kim, S. L., Hahn, D. R.; Arch. Pharm. Res., **1989**, *12*, 207. (b) Matsunaga H., Katano, H., Yamamoto, M.; Fujito, H., H.; Mori, M., Tukata, K. Chem. Pharm. Bull., **1990**, *38*, 3480.
- 6. Maccaulay, D. A.; Line, A. P. J. Am. Chem. Soc. 1953, 75, 2411.

Received 27 September, 2002